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All books, monographs, journal articles, and other publications (including films and other multisen-
sory materials) relating to the history of mathematics are abstracted in the Abstracts Department. The
Reviews Department prints extended reviews of selected publications.

Materials for review, except books, should be sent to the Abstracts Editor. Sloan Despeaux, Western

- Carolina University, Cullowhee, NC 28723, USA. Books in English for review should be sent to Adrian
Rice, Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA. Books in
other languages for review should be sent to Antoni Malet, Universitat Pompeu Fabra, Departament
d’Humanitats, c. Ramon Trias Farga 25-27, Barcelona, 08005, Spain.

Most reviews are solicited. However, colleagues wishing to review a book are invited to make their
wishes known to the appropriate Book Review Editor. {Requests to review books written in the English
language should be sent to Adrian Rice at the above address: requests to review books written in other
languages should be sent to Antoni Malet at the above address.) We-also weleome retrospective reviews
of older books. Colleagues interested in writing such reviews should consult first with the appropriate

- Book Review Editor (as indicated above, accordmg to the language 1n which the book is written) to avoid
duplication.

Jean le Rond d’Alembert, Oeuvres Complétes, Sene I, Trmtes et mémoires mathemathues, 1736-1756,
Volume 7, Précession et nutation (1749-1752)

Ed1ted by Michelle Chapmnt—Touze and Jean Souchay. Paris (CNRS Editions). 2006. clix + 492 pp.

The volume of d’ Alembert’s Oéuvres Completes here under review consists primarily of a new edition of d’Alem-
bert’s Recherches sur la precession des equinoxes, et sur la nutation de I’axe de la Terre, dans le systeme newtonien.
This work, the first ever to give a correct explanation of the precession and nutation, was ori 1ginally published in July,
1749, and has never until now been repubhshed In 1ts entirety, or submitted to sustained editorial scrutiny and detailed

correction. These tasks have now been carried out ‘brilliantly and with all imaginable care by Michelle Chapront-Touze
and Jean Souchay. |

The volume contains as well (on pp. 369—-4035) an edition of a manuscript by d’Alembert, “Observations sur
quelques mémoires, imprimés dans le volume de 1’ Académie 1749” D’ Alembert here comments on three memoirs
by Euler, contained in the volume of the Berlin Mémoires for 1749—a volume published in 1751. D’ Alembert’s com-
ments were sent to Berlin for publication in the Berlin Mémoires, but were never published there during d’ Alembert’s
Iifetime. The first of the Euler memoirs that d’ Alembert comments upon concerns the precession and nutation; it bears
the same title as d’ Alembert’s treatise, except in omitting the final phrase dans le systéme newtonien. In it Euler makes
no mention of d’ Alembert’s treatise—a fact which puzzled d’ Alembert and wounded his feelings, and may strike us
also as puzzling. | | |

We would first acknowledge the enormous task that Chapront-Touzé and Souchay have carried out in their editing
of these works. D’ Alembert’s treatise as originally published is an arduous and sometimes frustrating assignment for
the reader. The diagrams for the propositions are crowded together on four plates at the end of the volume; they are
inexpertly made, and lack the cues that could facilitate their intended, three-dimensional interpretation. In the text,
numerous symbols, chosen with little apparent system, must be distinguished and remembered; typographical errors,
e.g., prime marks wrongly inserted or omitted, are a further source of confusion. At various junctures, the reader yearns
for a recon oitering guide to inform him where he has arrived in the complex argumentation he 1s slogging through.




Already in September, 1749, d’ Alembert’s friend, the Swiss mathematician Gabriel Cramer, had written d” Alembert,
conveying some of these complaints.

The editors of the new edition have spared no effort to smooth the difficulties for the reader. Each proposition
1s accompanied by extensive footnotes, which serve to clanfy the argument of the particular proposition as well as
its place in the overall course of the reasoning, and to supply historical information illuminating why d’Alembert
proceeds as he does. Such technical terms as “force,” “puissance,” etc., have different meanings for d’ Alembert than
they may suggest to us, and these differences are carefully explained. The footnotes swell the new volume to nearly
twice the size of the onnginal. All the diagrams have been redesigned, with dotted and dashed lines added to bring out
their three-dimensional character, and each diagram is placed (as it should be!) adjacent to the proposition it illustrates.

An extensive “General Introduction” (pp. x111—cxxxviil) provides background for reading the treatise. Of the sixteen
topics dealt with, we mention those that are especially helpful in clarifying what d’ Alembert’s treatise achieves.

(I, XI). The precession of the equinoxes, discovered in Antiquity, 1s a motion of the stars eastward with respect to the
equinoxes, or (after the triumph of heliocentrism) ot the equinoxes westward with respect to the stars; thus Hipparchus
in about 130 B.C.E. found that in 200 years Spica’s distance westward of the autumnal equinox had lessened by 2°.
Isaac Newton was the first to propose a mechanical cause for this phenomenon, 1n the Moon’s and Sun’s gravitational
action on the Earth’s equatorial bulge. The steps of Newton’s explanation are, however, seriously flawed, his mistakes
being principally due to his lack of a correct understanding of the mechanics of rotational motion. An important
accomplishment of d’ Alembert’s treatise was to explain, for the first time, the errors in Newton’s explanation.

(II). With regard to the obliquity of the ecliptic (the ecliptic’s inclination to the Earth’s equator), d’ Alembert 1n his

treatise followed the astronomers of his day in assuming its constancy since ancient times at 23°29’. The larger values
~ given by ancient astronomers were dismissed as erroneous (which they were in part). Euler in 1756 showed that, owing
to planetary perturbation of the Earth’s motion about the Sun, the obliquity is during the present age diminishing at a
rate of about 47" per century. This secular diminution is accompanied by a slight alteration of the precession of the
equinoxes, called “planetary precession” to distinguish it from the much larger “luni-solar” precession caused by the
Sun’s and Moon’s gravitational action on the Earth’s equatorial bulge. D’ Alembert in his treatise deals only with the
latter. |

(I1I). A major inducement leading d’ Alembert to take up the topic of the precession was James Bradley’s discovery
of a nutation in the Earth’s axis. This discovery, which Newton in his Principia had neither predicted nor imagined,
was officially announced by Bradley in 1748, after it had been confirmed by observations of changes in the zenith
distances of stars continued through twenty years. But already in the late 1730s Bradley had informed the astronomers
of the Académie of the essentials concerning it. What Bradley found was that, putting aside the regular changes in
zenith distance due to the mean precession of 50” in longitude per year (with the latitude remaining constant), the
stars undergo a hibration 1n dechnation that 1s completed 1n some 18.6 years. This is the period of the recession of |
the nodes of the lunar orbit (its two intersections with the ecliptic) through 360°. Bradley reasoned that the Moon’s
gravitational action on the Earth’s equatorial bulge would be of maximum effect in shifting the Earth’s axis when the
Moon’s orbit was most inclined to the Earth’s equator (this occurs when the ascending node of that orbit is in 0° of
Aries), and of minimum effect when the Moon’s orbit was least inclined to the Earth’s equator (this occurs when the
ascending node is 1n 0° of Libra). Bradley used a geometrical model due to John Machin to elucidate the expected
variations in the precession and declination of stars, and it is this model that d’ Alembert undertakes to substantiate
theoretically.

- (IV, X). Both Huygens and Newton had concluded from mechanical principles that a spinning Earth would be
flattened at the poles. Newton deduced that, for an Earth originally liquid, homogeneous, and spinning, hydrostatic
equilibrium would require the flattening, | '
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to be 1/229. For an Earth not homogeneous but denser toward the center (this is the more plausible model), the
flattening would be less. Measures of a degree of the menidian at the Arctic Circle and at the Earth’s equator, obtained
by two expeditions sent out by the Paris Académie m the 1730s, yielded much larger values, incompatible with
the plausible model. D’ Alembert in his treatise accepted 1/178 for the flattening, but recognized and discussed the




difficulty of accounting for it. The issue was finally resolved in the years just before and after 1800 by new measures
and new analyses. (The value accepted today is 1/297.) -

(V; VI). 1747 and 1748 were years of crisis for the Newtonian law of gravitation. The mathematicians Euler,
Clairaut, and d’Alembert, seeking to derive the inequalities of the Moon from Newton’s inverse-square law, had by
September of 1747 reached the conclusion that that law yielded no more than half the motion of the Moon’s apogee.
(The apogee advances approximately 40° per year.) Meanwhile d’ Alembert, starting perhaps as early as 1745, had
been working to derive the nutation of the Earth’s axis discovered by Bradley; it appears that by September, 1748 he
had obtained the differential equations for the problem, but had obtained a result for the nutation that was far too large.

The first of these problems was resolved by Clairaut. B'y December, 1748, he had realized that his first result for the
motion of the Moon’s apogee would likely be modified significantly by higher-order approximations. The following
May he presented to the Académie a solution incorporating the first- and second-order approximations, and yielding
almost all of the observed motion of the apogee. |

Since the spring of 1746 d’ Alembert had been working on the elaboration of a lunar theory, and by mid-summer
of 1748 had practically finished it. In the course of this work he had become increasingly convinced that the Moon’s
iequalities would prove in accord with the inverse-square law. Preferring not to compete with Clairaut in working
on the problem of the Moon’s apsidal motion, he turned full-time to the problem of the nutation—a problem that, so
far as he knew, no-one else was wdrkjng on, hence ‘virgin.’ The flaw in his earlier approach to this problem, he soon
found, had been the failure to take into account the rotational motion of the particles of the Earth about the Earth’s
axis. The new problem was to deal with the changes in these motions and find how they influence the motion of the
axis. In his solution of this problem d’ Alembert invoked d’ Alembert’s principle—a principle he had earlier introduced
and applied to problems in which the rotational axis was fixed. In the case of the precession the axis was free to move.
- This is the nub of the difficulty; and the fact that it was resoluble with the aid of d’Alembert’s principle was the
triumph of d’ Alembert’s solution. His book was in press by May of 1749. It supplied new confirmations of Newton’s
inverse-square law. | _ | ' _

(VID). In this section Chapront-Touzé and Souchay provide an analysis of the innovations of d’ Alembert’s treatise
1n mechanical conéept and procedure. These include: the notion of an instantaneous axis of.rotation, understood as
the ensemble of points of the solid which have zero velocity at the instant considered; and the devices and concepts
involved in applying d’ Alembert’s principle to derive the motion of the Earth’s axis. |

Iwenty years ago the present writer published a comparative study of d’Alembert’s and Euler’s memoirs on the
precession and nutation (“D’ Alembert versus Euler on the Precession of the Equinoxes and the Mechanics of Rigid
Bodies,” Archive for History of Exact Sciences, 37 (1987), 233-273). In it I claimed that d’ Alembert in applymg
his principle succeeded only by a double error of sign. Chapront-Touzé and Souchay find no evidence for this error,
and I am no longer convinced that any such error occurs; I must conclude that my claim emerged out of confusion.
D’ Alembert did not deserve this slight. | | |

I remain persuaded, following Truesdell, that d’ Alembert fails to give the correct basis for his principle. In Chap-
“ter IT of his treatise on the precession, he enunciates this principle as follows. Consider a particle of the Earth having
mass L. Let ¥ be the accelerative force exerted on i by the Sun, and ¥’ the accelerative force exerted on it by the
Moon; the motive forces exerted by the Sun and the Moon on u will then be &, u¥’. Let the particle u have the
velocity u at time ¢, and the velocity u’ at time ¢ +dt. “If” says d’ Alembert, “we regard the velocity u as composed of
the velocity 1’ and another velocity »” which is inﬁnit_e_ly small, the system of all the particles of the body (the Earth),
each animated by the velocity 1", must be in equilibrium with the forces &, ¥’ > B

- Much is left tacit in d’Alembert’s statement and application of his principle. The forces of constraint that keep
the body rigid are left unmentioned. Yet according to Euler, “the internal forces destroy each other mutually, so that
the continuation of the motion requires external forces. ..” (“Discovery of a New Principle of Mechanics,” Leonhardi
Euleri Opera Omnia, I, 5, 81-108). This equilibrium of the forces of constraint, implied by the supposition of the
‘Earth’s rigidity, is the very source of d’Alembert’s principle. In Truesdell’s articulation of this (The Rational Me-
chanics of Flexible or Elastic Bodies, 1638—1788. in Leonhardi Euleri Opera Omnia U, 11(2)), if a (boldface means
vector) 1s the acceleration of any mass-element of the rigid body, then a = a s + a., where a f 18 the acceleration of
the mass-element that would result from the externally applied forces acting alone, and a. is the acceleration that re-
sults from the mutual actions of the mass-elements. D’ Alembert’s principle comes from the fact that the accelerations




a.=a — ay torm a system 1n static equilibrium, so that

| Zu(’a——a]v)::('), eru(a*af):o.

Here 1 is the mass of a particle, and r its vector distance from the instantaneous axis of rotation. It was 1n effect the
second of these conditions (an equilibrium of moments) that d’ Alembert used in deriving the precession and nutation,
but the vector expression of a moment was not available to him.

Euler found d’ Alembert’s statements of principle less than lucid. In a letter that reached d’ Alembert on J anuary 3,
1750, d’ Alembert reports Euler as stating (my translation)

..that he had received and read my book, that he had already applied himself to this subject for some time, but not
finding himself able to overcome all the obstacles he met, he had been obliged to abandon it entirely. He adds in this same
letter that in truth he has found himself unable to follow me, but that after seeing in a general way how I vanquished the
difficulties that had previously defeated him, he had recommenced his mvestigation 1n his own manner, and that he was so
fortunate as to bring it to completion. . . .

On March 5, 1730, Euler read his own Recherches sur la Précession at the Berlin Academy. Two days later he
wrote d’ Alembert again, this time giving a more extended account of his struggle to derive the precession (Leonhaardi
Euleri Opera Omnia, IV A, §, 3006; my translation of the relevant passage):

1 applied myself repeatedly and for a long time to the problem of precession, but [ always encountered an obstacle — the
great number of circumstances that have to be taken 1nto account, and above all this problem: given a body turning about
any axis freely, and acted upon by an oblique force, to find the change caused both in the axis of rotation and in the motion.
The solution of this is absolutely required for the subject you have so happily developed. But with respect to this problem
all my investigations had been unavailing so far, and I would not have applied myself to it further, if I had not seen that the
solution must necessarily be encompassed in your treatise, although I was not able to find it there, which at first increased
so much the more my desire to develop your whole method. But I must also confess that I could not follow you in the
preliminary propositions you employed, for your way of carrying out the calculation was not yet very familiar to me. . ..
But now that I have succeeded better in the investigation of this same subject, having been assisted by some insights in
your work by which I was little by little enlightened, I have come to be able to judge your excellent conclusions.

Chapront-Touzé and Souchay suggest that Euler’s phrase “the preliminary propositions you employed” refers to
d’ Alembert’s Chapter 11, “Propositions de géométrie & méchanique, nécessaires pour la solution du probleme.” And
these propositions are indeed complicated. In order to determine the effect of a torque, d’ Alembert reduces the problem
geometrically to a case of statics representable in a plane. Euler, by contrast, had for years been 1n the habit of reducing
the action of torques to forces acting on given radius arms. Because of this, and also of his employment of the rules
of spherical trigonometry, his argumentation is stmpler and more straightforward than d’ Alembert’s.

In another respect, however, d’ Alembert’s argumentation 15 superior. He solves the second-order differential equa-
tion of his problem, and is thus enabled to compute the maximum possible angle between the Earth’s axis of figure
and axis of rotation; he shows that that angle is tiny. Euler appears to be dependent on this result to justify identifying
the two axes, and approximating the moment of inertia of the Earth as that of a sphere rather than that of a spheroid.

After settling the problem of the precession and nutation to his own satisfaction, Euler went on to systematize the
mechanics of rigid bodies. And so this branch of mechanics as we have it today, and indeed as 1t has been accepted
since the late 18th century, shows everywhere the shaping and standardizing hand of Euler. The concept of ‘moment
of inertia,” the notion of principal axes, the equation for torque in analogy with F = ma (namely, T = J«), the "Euler

angles’ in a coordinate system fixed within the rotating body—these tormulations were Euler’s.
| As has sometimes been remarked, the route by which a discovery is first reached is not always the clearest route
for later learners to follow. In a late memoir, Euler at last gave a fitting appreciation of d’ Alembert’s achievement:

..before the celebrated d’ Alembert no one, so far as is known, undertook the investigation of this sort of motion [the
precession]... For since the Earth, moving freely to and fro in the aether and acted upon by the forces of the Sun and
Moon, does not so rotate that its axis remains always parallel to itself, its true motion cannot in the least be accounted for
by the rules developed for the simpler kinds of motion. Whence this most acute man was forced to call to his aid much




more lofty rules, which are of such a character that by their help it appears possible to define any other motions whatever
of this kind, however complicated, with the same success (Leonhardi Euleri Opera Omm’a,_ 1T, 9, 413).

. Curtis Wilson
St. John's College,
Annapolis, Maryland, USA
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