Sélection de lettres
|
|||||
    [Manuscrit autographe] (affichée) | |||||
Ms. 880, f. 18-19
|
|||||
    [Imprimé 1980] | |||||
Leonhard Euler, Opera Omnia, série IV A, vol. 5, p. 293-295
|
Euler Leonhard (Berlin) à D'Alembert (Paris)
f. 18rMonsieur,
Je profite du depart de Monsieur de Maupertuis pour repondre aux deux lettres du 17 Juin et du 7 Sept. dont Vous m'aves bien voulu honorer. Je suis très sensible aux soins que Vous aves emploiés pour me procurer le prix de cette année et je souhaiterois d'etre en état de Vous temoigner ma reconnoissance aussi efficacement que je voudrois, et cela d'autant plus que je dois avouer, qu'il y a quantité de choses dans la theorie du mouvement de Saturne, que je n'ai pas eté capable de developper, et je doute fort, que je serai en etat de me satisfaire à moi meme, quand meme je reprendrois cette matiere de nouveau. Il est bien vrai qu'avant que j'eus trouvé la resolution de la formule \((1-g\cos\omega)^{-\mu}\) je ne voyois d'autres resources de parvenir à une conclusion, que par voye des quadratures, comme Mr. Bernoulli a fait ; mais j'ai pourtant été oblige de m'ecarter de la rigueur geometrique plus que je ne voulois : et je ne doute aucunement que Vos remarques là dessus ne soient que trop fondées, quoique n'ayant plus un exemplaire de ma piece, je ne sois pas en état d'en faire l'examen. Cependant je ne puis pas comprendre, comment en supposant l'orbite de Saturne circulaire, faisant abstraction de l'action de Jupiter, il seroit possible de faire entrer dans le calcul l'anomalie de Saturne. Car l'orbite etant circulaire la considération de l'aphelie, auquel l'anomalie se rapporte, evanouit tout à fait : ainsi je ne vois pas comment dans ce cas Vous pretendes que l'anomalie de ♄ y dût entrer. De plus il est evident que tous les termes qui dependent de l'anomalie sont multipliés par l'excentricité ; donc si l'excentricité \(= 0\) tous ces termes evanouïront conjointement.
f. 18vAinsi je crois que Vous ne trouverés plus suspecte la forme integrale \(r=A\cos\omega+B\cos 2\omega\) &c, que j'ai prise de l'equation \(ddr+\mu \mu rd\omega^{2}+\textrm{&c}\) l'excentricité étant supposée \(=0\) et il me semble encore bien certain que si les deux excentricités de Saturne et de Jupiter evanouïssoient, la quantité \(r\) ne sauroit dependre que du cosinus de l'elongation de ces deux planetes, puisque dans ce cas il n'y auroit plus ni aphelie ni anomalie. Vous Vous souviendres que j'ai aussi allegué pour prouver, que la Lune ne suit pas exactement la theorie de l'attraction, cette raison que la parallaxe observée de la Lune surpassoit plus d'une minute celle qui se trouve par la theorie, et Vous ferés la meme remarque si Vous envisageres la table des parallaxes de Mr. Cassini ou de Flamsteed. Mais la derniere eclipse du Soleil m'a convaincu tout à fait que la vraye parallaxe de la Lune est parfaitement d'accord avec la theorie et j'ai vu avec la plus grande satisfaction que Mr. le Monnier a établi la parallaxe de la Lune presque d'une minute plus petite que Mr. Cassini. J'ai aussi remarqué que les variations du lieu du nœud et de l'inclinaison de l'orbite lunaire à l'ecliptique, que la theorie donne, sont parfaitement d'accord avec les observations, mais il me semble qu'il n'en est pas tout à fait de meme de la revolution entiere du nœud, car le mouvement annuel moyen du nœud de la theorie differe encore de plusieurs minutes de celui des observations. J'ai vu avec bien du plaisir que Vous aves traité le mouvement des planetes dans un milieu resistant avec un plus heureux succes que moi, car je ne voyois pas moyen de resoudre ce probleme convenablement qu'au cas que la resistance fut presque infiniment petite. Je Vous prie de me dire aussi Votre sentiment sur ma nouvelle theorie de la lumière et des couleurs, laquelle me paroit de plus en plus mieux fondée et conforme aux observations. La matiere des logarithmes imaginaires ne m'est plus si familiere que je puisse solidement repondre aux nouvelles remarques, que Vous me faites sur ce sujet, et je me vois obligé d'attendre jusqu'à ce que je pourrai reprendre l'examen de cette matiere.
f. 19rVos remarques sur mon Introduction ne sont que trop bien fondées ; mais Vous ne seres plus surpris des fautes qui s'y trouvent par rapport aux facteurs trinomes et aux points de rebroussement de la seconde espece, quand je Vous dirai que cet ouvrage a été presque trois ans à Lausanne et que je l'avois achevé dejà quelque tems auparavant. Alors j'avoue franchement que je n'avois pas encore une demonstration solide, que toute expression algebrique est resoluble en facteurs trinomes réels. Et dans ce tems la je fus aussi fort douteux, s'il y avoit effectivement des courbes qui eussent un point de rebroussement de la seconde espece et j'etois meme porté à croire le contraire. Ensuite m'etant eclairci parfaitement sur ce point, j'ai envoié à Mr. Bousquet une notte la dessus, dans laquelle j'ai montré la realité de ces points par l'exemple d'une ligne du quatrieme ordre \(y=\surd{x}+\sqrt[4]{x^3}\) (contre laquelle Vous n'aures plus de doute, dès que Vous la feres rationnelle en la reduisant à \(y^4-2xyy-4xxy+xx-x^3=0\)) et j'avois prié Mr. Bousquet de faire inserer cette note sous le texte. Je suis donc fort faché qu'il l'a introduit dans le texte meme, qui cause maintenant tant avec le precedent qu'avec la suite une contradiction ouverte. J'ai aimé mieux de laisser dans mon ouvrage cette matiere imparfaite que d'y faire les corrections que je n'avois trouvées que quelque tems après, surtout ayant eu occasion de profiter de Vos lumieres, de peur de paroître que je m'etois voulu aproprier des decouvertes, dont la premiere invention ne m'appartient point.
J'ai l'honneur d'être avec la plus grande Consideration
Monsieur Votre très humble et très obeïssant serviteur
L. Euler.
Berlin ce 28 Sept. 1748
f. 19vA Monsieur
Monsieur D'Alembert.
79.34  |  [janvier-mars 1779]
Grosley à D'Alembert
79.02  |  3 janvier 1779
D'Alembert à Frédéric II
79.03  |  4 janvier [1779]
D'Alembert à Espagnac Marc René
79.04  |  5 janvier [1779]
Sabbathier à D'Alembert
79.05  |  6 janvier 1779
Flechier à D'Alembert
79.06  |  18 janvier 1779
Vausenville à D'Alembert
79.08  |  20 [janvier] 1779
Seguier à D'Alembert
79.07  |  20 janvier 1779
D'Alembert à Vausenville
79.09  |  24 janvier 1779
Choquet à D'Alembert
79.10  |  30 janvier 1779
Vausenville à D'Alembert
79.11  |  6 février 1779
Astori à D'Alembert
79.12  |  6 février [1779]
Non identifié à D'Alembert
A79.01  |  8 février 1779
Non identifié à D'Alembert
79.13  |  14 février 1779
Jabineau de la Voute à D'Alembert
79.15  |  [c. 15 février 1779]
Astori à D'Alembert
79.14  |  15 février 1779
D'Alembert à Jabineau de la Voute
79.16  |  18 février 1779
D'Alembert à Villemain
79.17  |  20 février 1779
Mornay Mme à D'Alembert
79.18  |  23 février 1779
Luchet à D'Alembert
79.19  |  24 février 1779
D'Alembert à Tollius
79.21  |  27 février [1779]
D'Alembert à Mercier de Saint Léger
79.20  |  27 février 1779
D'Alembert à Amelot de Chaillou
79.22  |  3 mars 1779
Palissot à D'Alembert
79.23  |  4 mars 1779
Amelot de Chaillou à D'Alembert
79.24  |  6 mars 1779
D'Alembert à Lassone
79.25  |  10 mars 1779
D'Alembert à Amelot de Chaillou
79.26  |  10 mars 1779
D'Alembert à Montbarrey
79.27  |  15 mars 1779
Tinseau à D'Alembert
79.29  |  20 mars 1779
Lagrange à D'Alembert
79.28  |  20 mars 1779
D'Alembert à Decroix
79.30  |  22 mars 1779
D'Alembert à Meslin
79.31  |  25 mars [1779]
D'Alembert à Decroix
79.32  |  26 mars 1779
D'Alembert à Amelot de Chaillou
A79.02  |  27 mars 1779
D'Alembert à Mercure de France
79.33  |  28 mars [1779]
D'Alembert à Ginguené
79.35  |  13 avril [1779]
D'Alembert à Rochefort d'Ally Jacques
79.36  |  14 avril 1779
Choiseul à D'Alembert
79.37  |  28 avril [1779]
D'Alembert à Frisi
79.38  |  29 avril 1779
Le Brun Ponce Denis à D'Alembert
79.40  |  30 avril 1779
D'Alembert à Lagrange
79.39  |  30 avril 1779
D'Alembert à Frédéric II
79.41  |  23 mai 1779
D'Alembert à Non identifié
79.42  |  1 juin 1779
Ostervald à D'Alembert
79.43  |  2 juin 1779
Ansse de Villoison à D'Alembert
79.44  |  5 juin 1779
D'Alembert à Gadbled
79.45  |  5 juin 1779
Luchet à D'Alembert
79.46  |  6 juin 1779
Frédéric II à D'Alembert
79.47  |  7 juin 1779
D'Alembert à Melanderhjelm
79.48  |  10 juin 1779
D'Alembert à Ostervald
79.49  |  17 juin 1779
Non identifié à D'Alembert
79.50  |  25 juin 1779
Lagrange à D'Alembert
79.51  |  2 juillet 1779
D'Alembert à Frédéric II
79.52  |  5 juillet [1779]
D'Alembert à Rochefort d'Ally Jacques
79.53  |  16 juillet 1779
D'Alembert à Hemsterhuys
79.54  |  17 juillet [1779]
Grosley à D'Alembert
79.56  |  18 juillet 1779
D'Alembert à Dotteville
79.55  |  18 [juillet 1779]
D'Alembert à Cadet de Vaux
79.60  |  [août 1779]
Malesherbes à D'Alembert
79.57  |  2 août 1779
Montausier à D'Alembert
79.58  |  11 août 1779
Argental à D'Alembert
79.59  |  29 août 1779
Saint Ange à D'Alembert
79.61  |  6 septembre 1779
Mimeure à D'Alembert
79.62  |  10 septembre 1779
D'Alembert à Lagrange
79.63  |  11 septembre 1779
D'Alembert à Frisi
A79.03  |  18 septembre 1779
D'Alembert à Mercure de France et Journal Encyclopédique
79.64  |  19 septembre 1779
D'Alembert à Frédéric II
79.65  |  22 septembre 1779
D'Alembert à Melanderhjelm
79.66  |  25 septembre 1779
Dugast de la Bartherie à D'Alembert
79.67  |  29 septembre 1779
D'Alembert à Bertin
79.68  |  2 octobre 1779
D'Alembert à Caze de la Bove
79.69  |  7 octobre 1779
Frédéric II à D'Alembert
79.70  |  12 octobre 1779
Castillon à D'Alembert
79.71  |  16 octobre 1779
Borelly à D'Alembert
79.72  |  17 octobre 1779
Bertin à D'Alembert
79.73  |  [c. 15 novembre 1779]
D'Alembert à Aude
79.74  |  17 novembre 1779
D'Alembert à Fromant
79.75  |  19 novembre 1779
D'Alembert à Frédéric II
79.76  |  23 novembre 1779
Non identifié à D'Alembert
A79.04  |  29 novembre 1779
Franqueville (La Tour) Mme à D'Alembert
79.77  |  3 décembre 1779
Frédéric II à D'Alembert
79.78  |  11 décembre 1779
Lagrange à D'Alembert
79.79  |  19 décembre 1779
Nerot à D'Alembert
79.80  |  [décembre 1779]
D'Alembert à Frédéric II