Sélection de lettres
|
|||||
    [Manuscrit autographe] (affichée) | |||||
Ms. 880, f. 15-16
|
|||||
    [Imprimé 1980] | |||||
Leonhard Euler, Opera Omnia, série IV A, vol. 5, p. 297-299
|
Euler Leonhard (Berlin) à D'Alembert (Paris)
f. 15rMonsieur,
J'espere que Vous aures bien reçu ma derniere lettre, dont Mr. de Maupertuis a eu la bonté de se charger : celle-cy Vous sera remise par Mr. Battier mon Cousin et Membre de notre Academie, qui ayant le dessein de s'appliquer de toutes ses forces aux mathematiques à Paris, m'a fort prié de lui procurer l'honneur de Votre connoissance. Comme je suis bien seur que Vous le trouverés digne de Votre affection, j'espere que Vous ne me saures pas mauvais gré de cette recommendation et que Vous ne lui refuseres point le secours de Vos lumieres, dont il aura besoin dans la poursuite de ses etudes mathematiques.
J'ai consideré dernierement la courbe \(AM\), qui etant rapportée à l'axe \(CQ\) perpendiculaire à la droite donnée \(AC = 1\), a cette proprieté que l'appliquée \(QM = u\) qui repond à l'abscisse \(CQ = t\), est egale à l'arc \(AQ\) d'un quart de l'ellipse dont les deux demi-axes sont \(AC = 1\) et \(CQ = t\). On voit d'abord que si \(CQ = t\) evanouït, alors l'appliquée \(QM = u\) devient \(= CA = 1\), de sorte que la courbe \(AM\) sera à peu près semblable à une hyperbole équilaterale dont le centre est en \(C\) : car elle aura aussi f. 15v des aymptotes qui passent par le point \(C\), et qui font un angle demi-droit avec \(CA\). Il n'est pas difficile d'exprimer la nature de cette courbe par une équation differentio-differentielle, qui supposant l'element \(dt\) constant, sera \(\frac{ddu}{dt^2}=\frac{(1+tt)du}{t(1-tt)dt}-\frac{u}{1-tt}\). De là il semble d'abord qu'il ne sera pas difficile d'exprimer la valeur de \(u\) par une telle series \(u=1+Att+Bt^4+Ct^6+Dt^8+\textrm{etc}.\) mais Vous verres avec bien de la surprise, que tous ces coefficiens \(A\), \(B\), \(C\), \(D\), etc. deviennent infinis. Quoique cette équation ne serve de rien pour la connoissance de cette courbe, il s'ensuit de là, que le rayon de la developpée de cette courbe en \(A\) est infiniment petit. Mais je voudrois voir l'equation entre les coordonnées \(AP = x\) et \(PM = y\), qui exprimât seulement la nature d'une portion infiniment petite de la courbe auprès de \(A\). Cette équation aura une telle forme \(y=\alpha x^n\) selon Vos remarques, et puisque la tangente en \(A\) est perpendiculaire à l'abscisse \(AP\), il sera \(n < 1\), et puisque la courbure en \(A\) est infiniment grande il y aura \(n >\frac{1}{2}\) ; mais quelque Valeur entre ces deux limites, que Vous ne donnies à \(n\) elle ne satisfera jamais à l'équation differentio-differentielle. En voicy donc un cas bien étrange, dont je suis curieux de voir si Votre solution sera d'accord avec la mienne.
J'ai l'honneur d'être avec la plus parfaite consideration
Monsieur
Votre très humble et très obeïssant serviteur
L. Euler
Berlin ce 27 Dec 1748
61.01  |  6 janvier 1761
Voltaire à D'Alembert
A61.01  |  12 janvier 1761
D'Alembert à Laporte via le Mercure de France
61.02  |  9 février [1761]
Voltaire à D'Alembert
61.03  |  10 février [1761]
D'Alembert à Rousseau Jean Jacques
61.04  |  15 février 1761
Rousseau Jean Jacques à D'Alembert
61.05  |  20 février 1761
D'Alembert à Frédéric II
61.06  |  27 février [1761]
Voltaire à D'Alembert
A61.04  |  [mars] 1761
Rameau à D'Alembert via le Mercure de France
A61.03  |  [mars 1761]
D'Alembert à Journal Encyclopédique
61.12  |  [fin mars 1761]
D'Alembert à Roussier
61.07  |  3 mars [1761]
Voltaire à D'Alembert
61.08  |  9 mars [1761]
D'Alembert à Voltaire
61.09  |  [c. 10 mars 1761]
D'Alembert à Roussier
61.10  |  13 mars [1761]
D'Alembert à Roussier
61.11  |  19 mars 1761
Voltaire à D'Alembert
A61.02  |  [21 mars 1761]
D'Alembert à Rameau via le Mercure de France, Observateur Littéraire
61.13  |  9 avril [1761]
D'Alembert à Voltaire
61.14  |  15 avril 1761
Lambert Jean Henri à D'Alembert
61.15  |  20 avril [1761]
Voltaire à D'Alembert
61.16  |  [7 ou 8 mai 1761]
Voltaire à D'Alembert
61.17  |  19 mai [1761]
D'Alembert à Voltaire
61.18  |  [31 mai 1761]
Voltaire à D'Alembert
A61.05  |  [juin 1761]
Rameau à D'Alembert via le Mercure de France
61.19  |  13 juin 1761
D'Alembert à Tronchin
61.20  |  25 juin [1761]
Voltaire à D'Alembert
61.21  |  6 juillet 1761
Bonnet à D'Alembert
61.22  |  9 juillet [1761]
D'Alembert à Voltaire
61.23  |  16 juillet [1761]
D'Alembert à Roussier
61.24  |  20 août 1761
D'Alembert à Non identifié
61.25  |  23 août [1761]
D'Alembert à Roussier
61.26  |  31 août [1761]
Voltaire à D'Alembert
61.27  |  8 septembre 1761
D'Alembert à Voltaire
61.28  |  15 septembre [1761]
Voltaire à D'Alembert
61.29  |  10 octobre [1761]
D'Alembert à Voltaire
61.30  |  20 octobre [1761]
D'Alembert à Ribotte Charon
61.31  |  20 octobre [1761]
Voltaire à D'Alembert
61.32  |  31 octobre [1761]
D'Alembert à Voltaire
A61.06  |  [novembre] 1761
Clairaut à D'Alembert via le Journal des Savants
61.33  |  4 novembre 1761
D'Alembert à Académie de Berlin
61.34  |  27 novembre 1761
D'Alembert à Lagrange